Российские ученые синтезировали и исследовали новый тип сверхпроводников из опалов и олова, который легко переключается из сверхпроводящего состояния в обычное и обратно, сообщает группа научных коммуникаций ФИЦ КНЦ СО РАН. Благодаря этой способности соединения могут применяться как детекторы частиц на ускорителях или использоваться в устройствах низкочастотной радиосвязи, к примеру, для связи под водой. Результаты работы опубликованы в журнале Superconductor Science and Technology.
Сверхпроводимость, или способность материала проводить электрический ток без потерь, разрушается под действием магнитного поля. Экспериментальной физике известны сверхпроводники двух родов — первого, выдерживающего слабые магнитные поля, и второго, сохраняющего свои свойства при более сильных магнитных полях. Теория предсказывает существование сверхпроводника промежуточного, полуторного типа.
Коллектив ученых из России, в который вошли исследователи Красноярского научного центра СО РАН, получил соединение, которое ведет себя в соответствии с предсказанными для сверхпроводника полуторного типа характеристиками. Необычные сверхпроводники синтезировали из «шариков» оксида кремния с крошечными пустотами, которые заполнены расплавленным оловом. Изначально исследователей привлекло необычное свойство олова — способность изменять тип сверхпроводимости в зависимости от размера частиц. Физики предположили, что благодаря этому свойству, на основе кремниевых опалов и олова можно получать сверхпроводники как первого, так и второго рода.
Однако на деле все оказалось намного необычнее. Образцы материала с большими порами и крупными наночастицами олова, около ста нанометров в диаметре, были сверхпроводниками первого рода. Но ученые также получили и другой тип соединения, которое находится словно в промежуточном состоянии между первым и вторым типами сверхпроводимости. Если в образце с небольшими порами присутствует «смесь» крупных и мелких наночастиц олова, он начинает проявлять магнитные характеристики, предсказанные для сверхпроводников полуторного рода. К примеру, магнитные вихри, проникающие в сверхпроводники полуторного рода, распределяются в нем неравномерно за счет того, что не только отталкиваются друг от друга, но и притягиваются.
Еще одной особенностью полученных сверхпроводников оказалась их упорядоченная пористая структура и слабая связь в ней между сверхпроводящими наночастицами. В образцах оловянные сверхпроводниковые элементы находились между «шариками» опала и были связаны между собой небольшими перемычками, что и приводило к слабой и легко разрушающейся связи между ними. Из-за такой специфики сверхпроводимость в синтезированном материале может разрушаться не только из-за электромагнитного поля, но и из-за «попадания» на сверхпроводник элементарных частиц, таких как фотоны, электроны и другие.
Такие особенности новых сверхпроводников позволяют использовать их в устройствах для радиоэлектроники. Они будут способны чувствовать слабейшие изменения магнитного поля и фиксировать низкочастотные волны, что можно использовать, например, для связи под водой. Более того, полученные сверхпроводники можно применять в детекторах заряженных частиц.
«Когда сверхпроводник обладает слабой связью, то достаточно направить на образец частицу, к примеру, посветить на него одним фотоном, чтобы сверхпроводимость на короткое время разрушилась. Это позволяет использовать такие сверхпроводники как одиночные детекторы фотонов или других элементов. Более того, можно подобрать и задать такие параметры, чтобы сверхпроводники реагировали только на определенные частицы. Это позволит использовать их для ловли частиц в качестве детекторов на ускорителях, таких как Большой адронный коллайдер», — рассказал один из авторов исследования —Денис Гохфельд, кандидат физико-математических наук, старший научный сотрудник Института физики им. Л.В. Киренского Красноярского научного центра СО РАН.
Комментарии