Физики обнаружили в редкоземельном соединении два сложных магнетизма

Физики обнаружили в редкоземельном соединении два сложных магнетизма

Как сообщает пресс-служба МГУ сотрудники Научно-исследовательского института ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова совместно с коллегами из Российской академии наук синтезировали германид диспрозия в метастабильном состоянии и выяснили, что в этом соединении сосуществуют два явления сложного магнетизма. Изучение свойств химических соединений носит фундаментальный характер и в дальнейшем может привести к открытию новых перспективных материалов. Результаты исследования были опубликованыв журнале Journal of Alloys and Compounds.

Германид диспрозия DyGe3— это редкоземельный элемент серебристо-белого цвета, который сравнительно редко встречается в земной коре и образует тугоплавкие, практически не растворимые в воде оксиды.В ходе исследования под давлением в восемь гигапаскалей ученые получили поликристаллические образцы германида диспрозия в метастабильном состоянии — равновесии физической системы, стабильность которой сохраняется при не очень больших возмущениях.

Физики обнаружили, что в этом соединении существует «волна зарядовой плотности» — явление, которое возникает в некоторых кристаллах при низких температурах из-за особенностей их электронного строения. Она представляет собой пространственно-периодические смещения ионов и электронной плотности — вероятности обнаружения электрона в определенной точке пространства.

В последних исследованиях основное внимание уделялось физике волны зарядовой плотности в редкоземельных соединениях и тому, как эта волна влияет на искажение кристаллической решетки и на магнитное упорядочение. Магнитное упорядочение — это самопроизвольное выстраивание магнитных моментов (векторов) атомов в веществе. То есть все векторы атомов в веществе имеют определенное направление: они могут быть параллельны (ферромагнитный порядок) или антипараллельны (антиферромагнитный порядок) друг другу. Недавно ученые выяснили, что волна зарядовой плотности может предшествовать и сосуществовать с антиферромагнитным упорядочением, когда половина векторов атомов направлена в одну сторону, а вторая половина повернута на 180о.

В германиде диспрозия при понижении температуры происходит переход к волне зарядовой плотности, а при еще более низкой температуре — к антиферромагнитному состоянию.

«Мы выяснили, что, когда структура кристаллической решетки немного искажается, а симметрия кристаллической структуры в окрестностях некоторых атомов меняется, в веществе происходит переход к волне зарядовой плотности. Волна оказывает определенное влияние на магнитные свойства вещества, приводя, в частности, к появлению спиральной магнитной структуры», — отметил один из авторов статьи, доктор физико-математических наук, ведущий научный сотрудник лаборатории электрон-ядерных и молекулярных процессов НИИЯФ МГУ Александр Николаев.

Ученые отмечают, что полученные результаты позволяют лучше понять механизмы взаимосвязи и корреляции зарядовых и спиновых характеристик электронной системы. Зарядовые характеристики связаны с волной зарядовой плотности, а спиновые — с антиферромагнитным порядком.

«Наша работа посвящена, в первую очередь, фундаментальным проблемам физики конденсированного состояния. К таким проблемам относятся магнетизм и структурный фазовый переход. В будущем работа может привести к новому пониманию сложного магнетизма в редкоземельных элементах и открытию новых перспективных материалов», — заключил ученый.

Работа проходила в сотрудничестве с учеными из Института физики высоких давлений РАН, Московского физико-технического института и Объединенного института ядерных исследований, Института ядерных исследований и ядерной энергии (София, Болгария), Института физики конденсированных средств (Брауншвейг, Германия) и Института физики Университета Марии Склодовской-Кюри (Люблин, Польша).

На рисунке (кликабельно) компьютерный расчет электронных зон DyGe3, дающий представление о металлической связи в этом соединении. Электронные состояния представлены вдоль линий высокой симметрии в импульсном пространстве. Состояния с энергией, меньшей уровня Ферми (меньше нуля) – заняты, а с энергией выше уровня Ферми (выше нуля) – свободны. Точки Г, Х, М и другие являются характерными точками высокой симметрии.

Оставить комментарий

Вы можете использовать HTML тэги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>